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Abstract: Path planning in unknown environments is a crucial yet inherently chal-
lenging capability for mobile robots, which primarily encompasses two coupled
tasks: autonomous exploration and point-goal navigation. In both cases, the robot
must perceive the environment, update its belief, and accurately estimate potential
information gain on-the-fly to guide planning. In this work, we propose Cogni-
Plan, a novel path planning framework that leverages multiple plausible layouts
predicted by a conditional generative inpainting model, mirroring how humans
rely on cognitive maps during navigation. These predictions, based on the par-
tially observed map and a set of layout conditioning vectors, enable our planner to
reason effectively under uncertainty. We demonstrate strong synergy between gen-
erative image-based layout prediction and graph-attention-based path planning,
allowing CogniPlan to combine the scalability of graph representations with the fi-
delity and predictiveness of occupancy maps, yielding notable performance gains
in both exploration and navigation. We extensively evaluate CogniPlan on two
datasets (hundreds of maps and realistic floor plans), consistently outperforming
state-of-the-art planners. We further deploy it in a high-fidelity simulator and on
hardware, showcasing its high-quality path planning and real-world applicability.
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1 Introduction

Path planning is a fundamental capabil-
ity of robotic intelligence, enabling mo-
bile robots to compute efficient routes
toward designated targets to accomplish
their missions. In practical scenarios,
however, environments are usually un-
known beforehand, posing inherent chal-
lenges for decision-making. This work
focuses on two essential and coupled
tasks: autonomous exploration and point-
goal navigation, where the robot must
plan in unknown environments to either
fully map the space or reach a specific tar-
get, both via the shortest possible routes.
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Figure 1: CogniPlan’s layout prediction and trajec-
tory. We show halfway navigation in a simulated map
and halfway exploration in a Gazebo environment.

To reason effectively under such uncertainty in unknown environments, the robot must act on its
partial and dynamically updating belief. At the same time, it must estimate potential information
gain, where seemingly ambiguous choices may lead to significantly different long-term outcomes.
However, most planning policies remain rule-based, typically selecting frontiers (i.e., the boundary
between known traversable and unknown regions) using greedy heuristics based on proximity and/or
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expected unmapped volume [1-4]. While effective in simple scenarios, such approaches react pas-
sively to observations without actively reasoning about or predicting the broader environmental lay-
out, which limits their ability to plan with non-myopic spatial coherence. Data-driven approaches,
on the other hand, include deep reinforcement learning (DRL) methods that implicitly encode spa-
tial knowledge within policy networks [5-9], as well as those explicitly predicting layouts to then
apply conventional planning [10-14]. However, these two paradigms, implicit policy learning and
explicit layout prediction, are rarely integrated, leaving their potential synergy underexplored. This
work addresses the question: Can layout predictions be explicitly harnessed to guide planning under
uncertainty, so that a learned planner can reason over multiple plausible spatial hypotheses?

When humans plan paths, their brain typically constructs a cognitive map: an internal spatial repre-
sentation of the environment that supports reasoning, memory recall, and forward planning during
navigation [15]. Inspired by this capability, we introduce CogniPlan: a fully learned path planning
framework guided by multiple plausible layout predictions generated through conditional generative
inpainting. We illustrate this cognitive reasoning process in Fig. 1, where our robot first explicitly
predicts the layout structure and then implicitly reasons about and plans its path under uncertainty.

We first adopt a Wasserstein generative adversarial network (WGAN) [16] to generate plausible pre-
dictions conditioned on ground-truth layout types. We tailor our WGAN to be lightweight, allowing
efficient repeated inference for generating diverse predictions that capture layout uncertainty. The
output is further post-processed to produce binary outputs indicating either free space or obstacles.
During forward inference, we input a set of layout conditioning vectors to generate multiple plausi-
ble predictions, each corresponding to a different structural assumption about the partially observed
environment. Guided by these layout hypotheses, CogniPlan’s graph attention network (inspired
by [7]) reasons about potential uncertainty and information gain, allowing the agent to make real-
time, informed decisions about the next waypoint for exploration or navigation.

Recent studies highlight graph attention-based approaches as flexible and scalable solutions for path
planning, capable of generalizing across environments of varying sizes while maintaining a global
context [7, 17]. However, since these policies usually rely solely on graph representations, they
often fails to capture subtle yet meaningful details in the underlying occupancy map. For example,
frontiers with distinct shapes are encoded similarly in the graph, despite conveying critical structural
information. CogniPlan addresses this limitation by leveraging a generative model to predict plau-
sible layouts, effectively capturing non-trivial spatial details and amplifying them at the graph level
to guide informed planning decisions. We demonstrate a strong synergy between the scalability and
reasoning capacity of the graph attention network and the high-fidelity spatial features captured by
the generative model. Compared to using our layout generator with conventional planners [18-20]
and to state-of-the-art DRL planners [7, 9], CogniPlan achieves 17.7% and 7.0% reduction in travel
length for exploration, and a 3.9% and 12.5% reduction for navigation, respectively, across hundreds
of simulated maps. We further evaluate CogniPlan on a realistic floor plan dataset, exhibiting higher
efficiency without any additional training or fine-tuning. Finally, we deploy our framework in a high-
fidelity Gazebo simulation (in Appendix A), as well as on a mobile ground robot, demonstrating its
high-quality path planning and real-world applicability.

2 Related Works

Exploration Planner. Classical exploration relies on hand-crafted heuristics. A seminal example
is frontier-based exploration [1], where robots navigate to proximal frontiers to gradually uncover
unknown space. Later work improved efficiency by integrating information gain metrics like fron-
tier size and expected unmapped volume [21-23]. However, basic frontier-based algorithms are
inherently greedy, often causing inefficient backtracking and myopic behavior in complex environ-
ments [24]. Sampling-based methods, rooted in the next-best-view paradigm [25], alleviate these
issues by optimizing longer-term trajectories [3, 26]. Advanced planners such as TARE [18, 19],
HPHS [27], and FUEL [28] leverage hierarchical structures to balance global planning and local re-
finement. Learning-based methods typically use convolutional networks to encode the robot’s envi-



ronmental belief [5, 6, 29, 30], preserving local geometry but suffering from limited receptive fields,
which often forces planners to downsample or crop large environments. Recent work therefore
looked to graph attention networks as backbones to further boost reasoning and scalability [7, 31].
However, graph-based representations remain constrained to node-level features, overlooking fine-
grained, high-fidelity spatial details critical for effective planning.

Navigation Planner. Navigation planners can be broadly categorized into three groups: search-
based, sampling-based, and learning-based methods. Search-based methods (e.g., A* [20], D* [32],
and D*Lite [33]) rely on graph expansion with heuristic functions, while sampling-based meth-
ods (e.g., RRT [34], RRT* [4], and BIT* [35]) explore the continuous space through incremental
random sampling. Despite their success in fully known environments, both categories struggle in
unknown/partially known environments due to limited adaptability and lack of foresight. On the
other hand, learning-based methods, especially DRL-based, offer the potential to reason over uncer-
tainty and plan efficiently without hand-crafted rules [9, 36-38]. However, most navigation planners,
similar to exploration ones, lack explicit spatial prediction of unknown regions, which limits their
goal-directed behavior in complex scenarios [39]. In this work, we explicitly model and leverage
such predictions to improve planning efficiency and long-horizon navigation under uncertainty.

Planning with Map Prediction. Predicting unknown layouts from observed environmental beliefs
has emerged as a promising approach for exploration [10, 11, 14, 30, 40, 41], navigation [39, 42],
or both [12, 43]. The use of deep learning methods, particularly generative models [16, 44], enables
the prediction of semantically coherent and structurally plausible layouts, going beyond merely opti-
mizing for statistical similarity to ground truth. Most existing methods rely on a single deterministic
layout prediction without modeling uncertainty and decouple prediction from planning. They first
generate a layout prediction and then compute information gain (e.g., predicted sensor coverage) to
directly guide either a conventional planner [10, 11] or a learning-based one [30, 43]. More recent
exploration planners such as UPEN [12], MapEx [14], and PIPE [41], as well as the navigation
planner in [42], incorporate uncertainty estimates from learned predictors to support more informed
decision-making by conventional planners. CogniPlan bridges prediction and planning by provid-
ing a fully learning-based, uncertainty-aware framework for both exploration and navigation. It
estimates global layout uncertainty using multiple conditioning priors, which capture nuanced lay-
out cues and amplify those important to downstream planning. While methods like MapEx rely on
a few predictions without ensuring full exploration, CogniPlan guides planning with its predictions
while maintaining coverage, making it more broadly applicable in real-world scenarios.

3 Framework Design

An overview of the CogniPlan framework is presented in Fig. 2, illustrating how the conditional
generative inpainting network collaborates with the graph attention planner network. In this section,
we explain how the fine-grained belief map M, which contains non-trivial structural details/cues, is
amplified through the layout predictions M. Information relevant to planning, including frontiers,
connectivity, and uncertainty guidance, is extracted and encoded into a graph representation G’ =
(V', E) for use in downstream planning.

3.1 Problem Formulation

We consider a bounded environment £, partitioned into free space £¢ and occupied space £,. The
robot holds a spatial belief over the environment, which is discretized into a 2D occupancy map
M C Z? for layout prediction and planning. Following a policy 7, the robot navigates within
the traversable free space, forming a collision-free trajectory ¢ : {0,1,2,...} — &;. Here, 9;(t)
indicates the robot’s waypoint location at timestep t. Upon observation with its onboard sensor
(a LiDAR in our case) along v, the unknown areas M., are gradually revealed and classified into
either free areas M or occupied area M,, such that M = M, U M U M,. The exploration
task is considered complete upon the closure of M, with respect to M ¢, while the navigation task



is complete when the robot reaches the destination p € ;. Both planning tasks are formulated to
minimize the cost of completion, measured by either travel length D(¢)) or makespan.

3.2 Conditional Generative Inpainting

Image inpainting is a well-established technique for predicting missing regions in an image based
on the surrounding context. Most existing methods [10-12, 43] utilize encoder-decoder architec-
tures, such as variational autoencoder (VAE) [45] or U-Net [46], to generate local patches within
occluded areas, limiting their use to refine the map and estimate information gain. We hypothesize
that, with a diverse set of layout predictions, even if individually inaccurate, a planner network can
gradually learn to balance exploration and exploitation. This allows it to reason about both potential
information gain and the environment’s topology, enabling non-myopic path planning.

Learning to Inpaint Layouts. To generate diverse predictions, we train a WGAN with gradient
penalty on a dataset comprising three subsets of maps (namely room, tunnel, and outdoor), each
paired with a ground-truth layout type conditioning vector encoded as one-hot during training. This
layout conditioning vector z is then expanded to match the spatial dimensions of the input and
concatenated with the robot’s occupancy map belief and a mask indicating the unknown regions to
be predicted. The generator outputs a layout prediction M= Gen(M | z) that is composed of M !
and M, and is trained with the following objective weighted by A:

Lgen = —E[Dis(M)] + MM = €|, + A2||(M — £) @ M|,/ 3> Maa — A3 F1(M, ), (1)

which includes one adversarial loss from the discriminator and three reconstruction terms, including
an L1 loss over the entire prediction and a Dice (F1-score) loss for overlap accuracy. However,
overemphasizing reconstruction loss in all unknown areas can mislead the training process. Intu-
itively, missing pixels near known regions are less ambiguous and more critical for ensuring robot
traversability. Following [47], we implement a spatially discounted mask M4 and extend it to a
more flexible formulation that accommodates irregular mask shapes (known areas in M). We as-
sign higher weights to regions closer to known areas and apply a normalization term to account for
varying mask sizes. The weights decay exponentially with distance from known regions, controlled
by a decay factor (we use v = 0.95). See Appendix B for more implementation details.

Layout Uncertainty during Inference. To account for the unknown layout type during inference,
we design a set of diverse conditioning vectors Z = {zg, 21, ...}, where each vector represents a
specific structural pattern or a mixture thereof. This set includes both one-hot and soft one-hot vari-
ants, allowing the generator to produce a diverse mixture of layout predictions. We post-process
the output to obtain binary predictions and apply morphological closing and opening operations to
fill small holes and remove minor noises/artifacts. Since each pixel is classified as either free or
occupied, the average of multiple predictions can fully characterize the uncertainty, as it follows a
Bernoulli distribution. The inpainting model captures and amplifies non-trivial spatial cues in the
occupancy map that are often overlooked by the graph representation, such as incomplete corridor
connections, newly revealed wall corners detected by LiDAR, and multi-branch frontier structures
emerging ahead of corridors. We then incorporate the estimated uncertainty into the graph represen-
tation used by our planner. Notably, our lightweight generator has fewer than 0.35M parameters, en-
abling real-time multiple forward inferences for uncertainty estimation, even when running entirely
on CPU. Its efficiency also facilitates the use of the generated layout predictions for subsequent
downstream planner model training without introducing much computational overhead, in contrast
to the finetuned LaMa inpainting model [44] used in [14, 41], which has over 50M parameters.

3.3 Uncertainty-Guided Planner Network

Graph as Observation. Learning to plan on graphs offers a more scalable backbone than directly
planning on occupancy map images, enabling better reasoning and reduced spatial complexity [7, 9].
Instead of building a graph from the occupancy map belief M;, we construct a collision-free graph
G(Vi, E¢) at each decision timestep ¢, based on the layout predictions M. We choose to uniformly
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Figure 2: CogniPlan framework. We first train a generative inpainting network on procedurally-
generated maps, given their ground-truth layout type vector (room, tunnel, or outdoor), and then
freeze the model to train a graph-attention-based planner network. Our planner reasons over multiple
predictions generated from a set of conditioning vectors by incorporating probabilistic information
into the graph feature, and iteratively outputs the next waypoint for exploration or navigation.

distribute the nodes v € V over the free areas, and connect them based on proximity and line-of-
sight visibility, forming edges (v;,v;) € E. In addition to the node coordinates, we associate
each node with uncertainty and frontier-related attributes into the graph, yielding augmented node
representations v, = (v;, $;, D4, Ui, g;) € V'. Specifically, (1) s; € {0, 1} is the signal indicating
whether the node lies in known or predicted areas; (2) p; € [0, 1] is the average predicted probability
of free areas. Note that the layout predictions are averaged to represent uncertainty; (3) u; € [—1,1]
is the normalized utility, based on the number of observable frontiers at the node position (with
u; = —1 assigned in predicted areas); and (4) g; € {0, 1} is the guidepost, indicating whether the
node lies on the shortest trajectory to the nearest frontier within the known areas, which we find
particularly useful for backtracking when the robot reaches a dead-end. Note that we compute the
guidepost on the predicted graph rather than solely within the known areas, which helps optimize
the path toward the frontier. Following [9], for the navigation task, we additionally incorporate a
direction vector toward the point-goal into the graph. In this way, features from the predicted layout
are encoded into an informative graph G,(V/, E}), which is then fed into the planner network.

Policy Network. Our graph attention-based policy network comprises an encoder and a decoder:
the encoder aggregates information from nodes across the known map, while the decoder selects the
next neighboring node to visit based on the encoded global context.

The encoder consists of a feed-forward layer followed by /N stacked masked self-attention layers.
We first project the node properties in V; into d-dimensional features h™, which are then enhanced
through attention layers that aggregate information from neighboring nodes, subject to the mask
derived from graph connectivity E;. The mask constrains each node’s attentive field to immediate
neighbors, while stacking multiple layers progressively expands the context to N-hop neighbor-
hoods. This enables the encoder to integrate both local structural information and broader spatial
dependencies into a rich, uncertainty-aware representation h™ of the graph/environment informa-
tion. The decoder determines the final policy based on h™. We first select the feature at the robot’s
current position as the query, h¢ = h*® | and use it with neighboring node features (as key-value
pairs) in an attention layer to produce an updated feature he. A single-head attention mechanism is
then applied, using he and its neighboring node features, with the resulting attention scores directly
serving as the output policy 7 [48], from which the next waypoint is selected. It allows the policy to
adapt to varying numbers of neighbors, accommodating arbitrary graph connectivity.

Critic Network. The critic network estimates the state-action (Q) values based on the robot’s partial
observations, providing learning signals to guide the policy network. We adopt privileged learning
by directly feeding the ground-truth graph G*(V*, E*), extracted from &, into the critic to improve
value estimation, thereby facilitating more effective policy learning under a stochastic partially ob-
servable Markov decision process (POMDP). The critic has an identical network architecture as the
policy network, except that its final layer outputs Q-values instead of single-head attention scores.



Similarly, the critic contains prediction probability information p; as input, but only for nodes v} in
the ground-truth graph.

3.4 Network Training Details

Inpainting Model. Generative adversarial networks are prone to training instability, often resulting
in issues such as mode collapse or gradient explosion. To mitigate this, we adopt a WGAN with
gradient penalty (WGAN-GP [16]) and apply a warmup phase during the initial 10k iterations, where
only the generator is trained using a pure reconstruction loss (last three terms in Eq. 1). This warmup
encourages the generator to produce coarse but meaningful layout estimates before engaging in full
adversarial training for the subsequent 490k iterations. The discriminator loss is given by:

Lpie = B g [Dis(M)] — Ee[Dis(E)] + A E [(IV o DisM) 2 = 1)), @)

where M = aM + (1 — )& is a random linear interpolation between layout prediction and the
ground truth, with o ~ #/(0,1). The gradient penalty term, weighted by A4}, encourages the 1-
Lipschitz constraint on the discriminator, following [16]. To build our training dataset for the in-
painting network, we use TARE [18, 19] to explore the Dungeon environment provided by Chen
et al. [49]. We procedurally generate 3000 random maps, evenly distributed across three layout
types: room, tunnel, and outdoor environments. During exploration, we monitor the exploration rate
and save the occupancy map whenever the rate increases by more than 10%.

Planner Model. Both the exploration and navigation planners are trained using the same inpainting
model. We train the exploration planner on another set of 6000 maps (2000 per environment type)
and the navigation planner on 2000 maps with assigned start and target positions, using the soft
actor critic (SAC) algorithm [50] with discrete actions. Each map has a grid size of 250 x 250, with
a sensing range of 40 pixels. Nodes are uniformly distributed at intervals of 9px and connected to
neighboring nodes within a radius of 26px (connect to 25 neighbors at most in this setting). Empir-
ically, we use a set of seven layout conditioning vectors (i.e., | Z| = 7), consisting of one uniform
vector, three one-hot vectors, and three soft-biased vectors favoring each layout type. Alternatively,
our planner network can also be trained using a reduced set of four vectors or even a single uniform
vector, although this leads to degraded performance. Additional details are provided in Appendix B.

4 Experiments

In this section, we evaluate CogniPlan’s exploration performance across two datasets and deploy it
on real robot using the same trained model without any retraining or fine-tuning. We also evaluate its
navigation capability on simulated maps and compare both results against other baseline algorithms.

4.1 Evaluation on Simulated Maps

We evaluate CogniPlan on 150 maps for the exploration task, covering three different layout types
in simulated environments, and on 100 maps for the navigation task. All evaluation maps are unseen
during training. We measure and compare the travel length required to fully explore the environment
or reach a designated point-goal. We compare CogniPlan against baseline exploration planners: (1)
nearest: navigate to the nearest frontier; (2) utility: navigate to a frontier balancing proximity and
utility; (3) NBVP [3]: a sampling-based exploration planner; (4) TARE Local [18, 19]: the local
sampling-based planner from TARE; (5) ARiIADNE+ [7]: an ablative improved ARiADNE vari-
ant with privileged learning and the same guidepost as CogniPlan. (6) Inpaint+TARE: an ablative
baseline applying the TARE coverage planner to inpainted predictions treated as ground truth. For
navigation, we compare against: (1) BIT [35]: a sampling-based navigation planner; (2) D*Lite [33]:
a search-based navigation planner; (3) CA [9]: an ablative context-aware DRL navigation planner;
(4) Inpaint+A*: an ablative method that uses our layout prediction and plans A* path to the closest
unknown (if any) region to the goal. For all results, we use CogniPlan with four layout predic-
tions (i.e., | Z| = 4), from exploration and navigation planner model trained with seven, to balance
performance and computational efficiency.



Table 1: Exploration performance comparison over 150 maps (50 per environment). We report
the mean and standard deviation of travel length to complete exploration (lower is better).

NBVP | TARE Local | ARIADNE+ | Inpaint+TARE | CogniPlan
409.5(+63.4) [400.2(£55.3)| 379.5(£54.5) [436.5(4109.0) | 360.1(£43.5)

297.8(£69.3) |293.7(+73.6) | 303.5(+£87.1) | 300.4(+75.2) | 278.4(+66.7) | 319.7(+85.3) |268.5(+£58.9)
372.7(£67.6) | 358.6(+60.3) | 318.8(£72.9) | 310.9(56.0) | 330.1(£52.9) | 360.9(£73.0) |290.7(£50.8)

Average| 3609 | 3498 | 3439 | 3372 | 3203 | 3723 | 3064
Gap | 151% | 124% | 109% | 91% | T0% | 177% | 0%

Nearest

412.2(+51.3)

Utility
397.1(+63.3)

Room
Tunnel
Outdoor

Table 2: Navigation performance comparison over 100 maps. We report the mean and standard
deviation of travel length to reach the point goal (lower is better).

‘ BIT ‘ D*Lite ‘ CA ‘ Inpaint+A* ‘ CogniPlan
Distance | 275.2(£130.4) | 224.6(+85.9) | 253.9(£112.4) | 231.1(+125.8) | 222.1(£64.7)
Gap | 193% |  11% | 125% | 3.9% \ 0%

We present the exploration results in Table 1 and the navigation results in Table 2, where Cog-
niPlan consistently outperforms all baselines, including state-of-the-art learning-based approaches,
and slightly surpasses the near-optimal navigation planner D*Lite. Compared to using inpainting
with a conventional planner or learning-based methods without layout predictions (e.g., ARIADNE+
and CA), CogniPlan achieves a travel length reduction of 17.7% and 7.0% for exploration, and 3.9%
and 12.5% for navigation. Interestingly, Inpaint+TARE performs particularly poorly. Upon closer
inspection, we believe this may stem from high variability in layout predictions during the early
stages of exploration, which causes the coverage planner to generate inconsistent and divergent tra-
jectories. The planner struggles to effectively handle uncertainty and becomes overly reliant on
potentially inaccurate predictions, often leading to zig-zagging paths and reduced efficiency. We
believe this highlights the importance of using an uncertainty-aware downstream planner that can
leverage layout uncertainty to guide more consistent and efficient planning.

To investigate the impact of the number of predictions, we evaluate CogniPlan using |Z| = 1, 4, 7
predictions for both exploration and navigation tasks. As shown in Fig. 3, we report the reduction in
travel length when using four or seven predictions compared to a single prediction. The layout types
apply only to exploration. We observe that increasing the number of predictions during inference
generally improves performance. However, the gains tend to saturate as the number of predictions
increases, suggesting that a small number of diverse hypotheses is sufficient to guide planning.

4.2 Evaluation on Realistic Floor Plans

To benchmark CogniPlan in a more realistic setting, we further evaluate it on the KTH floor plan
dataset [51] and on Gazebo environments (Appendix A), which, unlike standardized simulated maps
suited for large-scale training and testing, better reflects real-world indoor environments. We com-
pare CogniPlan against the following representative baseline methods in a zero-shot setting: (1)
nearest; (2) ARIADNE+; (3) MapEx [14], a non-learning approach that uses map predictions and
is trained on the KTH dataset to estimate information gain, representing the state-of-the-art for fast
exploration on these maps. For fairness, we tune the parameters of all methods to maximize their
performance on those maps and ensure consistency with those used in CogniPlan (where applicable).

We first deploy each method across 10 diverse floor plans, running it twice on each map with differ-
ent starting positions. We record the exploration rate and travel length D(1)), and report the average
exploration progress curves in Fig. 4. We observe that MapEx achieves the best performance during
the early stages of exploration (up to 80%), but its progress plateaus when approaching full coverage.
This is likely because MapEx prioritizes waypoints that are likely to yield high information gain;
however, its effectiveness diminishes in the final stages, where the remaining unexplored regions
tend to be smaller, more isolated, or harder to predict. Although these out-of-distribution layouts
differ significantly from the data used to train CogniPlan’s inpainting and planner models, leading
to some predictions that visibly deviate from the ground truth, CogniPlan still maintains a steady ex-
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ploration, outperforming other methods beyond 90% coverage. We believe this may be because the
predicted layouts, though coarse, provide informative structural priors that enable long-horizon plan-
ning and reduce redundant local actions, which in turn enables the near-linear exploration progress
shown in Fig. 4. This is further supported by CogniPlan outperforming ARiADNE+, which does
not explicitly predict environment layouts.

CogniPlan also demonstrates robustness to starting position variability in exploration. We evaluate
performance on two similarly sized maps, each with five diverse starting points selected from differ-
ent spatial regions. We report the mean and standard deviation of total travel distance at 85%, 90%,
and 95% exploration coverage, which reflect near-complete exploration performance. As shown in
Fig. 5, CogniPlan achieves the lowest average travel distance and standard deviation, indicating re-
duced sensitivity to starting position and more globally consistent planning (the closer to the bottom
left corner, the better). At 90% and 95% coverage, it reduces standard deviation of D(v)) by over
50% compared to nearest and ARIADNE+. We attribute this improvement to the predictions pro-
viding global structural priors that guide the planner, reducing backtracking and redundant revisits.

4.3 Evaluation on Hardware

We validate CogniPlan through real-world
exploration experiments conducted in a
30m x 10m indoor laboratory filled with
cluttered objects such as tables, chairs,
equipment, and moving people. Our mo-
bile platform is a four-wheeled omnidirec-
tional robot with a maximum speed set

. . . . Figure 6: Real-world exploration experiment in a
to 0.75 m/g, equipped with a Livox Mid- 30%11 x 10m indoor laboratory. We show our mobile
3_60 3D LiDAR for odometry and' Map- robot, the lab environment, the intermediate Octomap,
ping. We use an Octomap resolution of  3nq the final point cloud with the robot’s trajectory.
0.2m per cell and a waypoint node reso-

lution of 0.8m. As observed, the robot generally completes exploration within 6 minutes, with a
travel length of approximately 100 meters. Fig. 6 illustrates how the robot predicts layouts during
exploration. We believe these results show the promise of CogniPlan’s framework for practical use.

5 Conclusion

In this work, we proposed CogniPlan, a path planning framework that combines uncertainty from
multiple explicit layout predictions with a graph attention-based planner trained via deep reinforce-
ment learning. We demonstrate their synergistic effect, where the inpainting model amplifies non-
trivial map details into uncertainty-aware graph representations to guide downstream planning. We
show CogniPlan plan more efficient paths for both exploration and navigation tasks across simu-
lated environments and realistic floor plans, all without additional training. We further deploy it on
a mobile robot, showcasing its ability to handle real-world scenarios.



Limitations and Future Work

Generalization and Prediction Diversity. Although CogniPlan’s planner network leverages graph
attention to scale across arbitrary graph topologies, the inpainting model still requires a fixed-size
occupancy map input. This imposes certain prior assumptions on the environment, which may
limit the scalability and generalization of the overall framework, and leave a domain gap upon
deployment. A possible solution is to adopt resolution-agnostic network architectures, coupled with
more diverse training data, to enhance spatial understanding across varied environments.

One-Way Pipeline. After pre-training our inpainting model, the generator is frozen during planner
training. That is, the planner must adapt to whatever predictions it receives, which limits continual
improvement and hampers adaptation to novel layouts discovered online. To address this, we plan
to explore end-to-end joint training, allowing planner gradients to flow into the generator, thereby
improving both components simultaneously, although this approach requires careful architectural
design. We also plan to use active sampling to select conditioning vectors in latent space, instead of
relying on a fixed or handcrafted set.

Replanning Computation Overhead. We employ a lightweight inpainting model capable of
rapidly inferring the layout; however, the main bottleneck lies in the graph rescheduling, where each
new prediction triggers a complete rebuild of the robot’s belief graph. This process can be accel-
erated by comparing successive predictions and incrementally updating the graph through selective
addition and pruning.

A Validation in Gazebo Simulation

Environment Setup We validate CogniPlan’s real-world performance in a high-fidelity Gazebo en-
vironment provided by Cao et al. [18, 19], using a four-wheel-drive mobile robot equipped with a
16-line Velodyne LiDAR for odometry and mapping. The environment incorporates realistic mo-
tion constraints, while a local planner ensures safe execution of waypoints generated by the high-
level planner. During validation, we adopt the graph rarefaction strategy from [7] to reduce graph
complexity. Specifically, we preserve a dense graph structure in predicted regions while applying
rarefaction in known areas, and remove nodes that are not connected via a valid path to the robot’s
current node.

Medium-Scale Environment. We first evaluate CogniPlan in a 54m x 34m indoor environment
crafted by Long et al. [27], which contains dense clutter and obstacles. They also introduced HPHS,
a hierarchical planner that directly samples from LiDAR data. We compare CogniPlan against the
baselines tested and reported in [27], including a frontier-based approach [52] and an improved RRT
planner TDLE [53]. The results are shown in Table 3, where we observe that CogniPlan produces
shorter paths with lower variance, indicating more consistent and stable trajectories due to effective
layout/uncertainty prediction. The corresponding trajectory is visualized in Fig. 7.

Table 3: Comparison over 10 runs in the medium-scale environment. We report the mean and
standard deviation of travel distance and path efficiency relative to the explored area.

Method | Frontier-based | TDLE | TARE | HPHS | CogniPlan
D(1) (m) 270.6(4+42.1) | 290.5(£35.6) | 190.3(£31.4) | 176.9(+24.7) | 170.9(+18.1)
Efficiency (m?/m) 3.14 2.93 4.31 4.78 4.95

Large-Scale Environment. We further evaluate our method in a 130m x 100m indoor setting com-
prising long, narrow corridors interconnected with spacious lobby areas. We compare CogniPlan
against DSV Planner [26] and TARE [18], both of which represent state-of-the-art conventional
planner for large-scale environments. We run each method five times and present the exploration
progress in Fig. 8 and trajectory example in Fig. 7. We notice that CogniPlan consistently outper-
forms TARE and DSVP throughout the exploration process, with notably lower variance, highlight-
ing that layout predictions can enhance both performance and robustness. Figure 9 visualizes the lay-
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Figure 7: Trajectories of CogniPlan and baseline planners in medium- and large-scale envi-
ronment. Colored lines represent the robot’s motion trajectories, with the red-to-purple spectrum
indicating progression from start to end.

out predictions during exploration. Despite the environment being significantly out-of-distribution
from the training data of both the inpainting and planner models, the predicted layouts still effec-
tively support planning and contribute to improved performance.

We believe this demonstrates the potential of the CogniPlan framework as a fully learning-based
planning approach that enhances performance, path robustness, and explainability. It also opens up
promising directions for future research in multi-agent planning and visual navigation.

Table 4: Comparison over 5 runs in the large-scale environment. We report the mean and stan-
dard deviation of travel distance and path efficiency relative to the explored volume.

Method | DSVP | TARE | CogniPlan

D(%) (m) 1300.6(+58.7) | 1144.9(£70.7) | 999.1(£17.1)
Efficiency (m®/m) | 4.03(+0.19) | 4.58(+0.30) | 5.25(£0.09)
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Figure 9: Layout predictions at three different timesteps dur-
ing exploration in a large-scale environment. We also show the
Figure 8: Exploration progress corresponding occupancy map (Octomap) and the rarefied graph
in a large-scale environment.  (nodes and green edges).

B Framework Design Choices

Environment Types. Room consists of spaces with varying sizes and connectivity. Tunnel com-
prises long corridors, where the effects of each planning decision are significantly delayed. Outdoor
is spacious with few obstacles or walls (see Fig. 10). We identify these three layout types as distinct
and use them to train our inpainting network accordingly. Thus, we preserve these characteristics
during planner evaluation as well.

Reconstruction Loss. The reconstruction term comprises L1 (pixel-level), Dice (region-level), and
an additional L1 loss that is spatially discounted around the known areas. The L1 and Dice losses
are complementary: L1 alone stabilizes gradients but often causes artifacts, whereas adding a small
amount of Dice loss reduces these artifacts and promotes spatial connectivity in the predictions.
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Figure 10: Examples of each environment type, along with an out-of-distribution prediction on the
KTH floor plan.

Conditioning Vector. We explored various conditioning strategies, including VAE sampling and
Monte Carlo dropout for probabilistic approximation, and found that one-hot and soft one-hot vec-
tors yield the best diversity and plausibility. Conditioning vectors that are not valid probability
distributions tend to produce unrealistic layouts (nearly all free space or all obstacles). The vector
choices for | Z| = 7 are illustrated in Fig. 2. We uniformly average predictions without weighting
(Eq. 3), as diversity naturally decreases as the robot explores/observes more of the environment.
That is, early predictions primarily rely on layout conditioning vectors, while later ones converge
based on the robot’s belief, forming a sense of conditional posterior.

N 1
My = 7| Z Gen (M | %) 3)

|Z
2, €EZ

Reward functions. We address both exploration and navigation by leveraging conditional layout
predictions to guide the graph attention network backbone. The two tasks share the same planner
framework and both aim to complete the task with minimal travel length or makespan, but they
differ in their input node features and in parts of the reward functions used to train the planner.
Following [7] for exploration and [9] for navigation, both tasks reward task completion and penalize
travel distance. Exploration further rewards the discovery of new frontiers, while navigation rewards
proximity to the goal, providing denser feedback that facilitates deep RL training.
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